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Abstract

A mathematical model for predicting the steady-state thermal performance of one-dimensional (cocurrent and

countercurrent) multistream heat exchangers and their networks is developed and is solved analytically for constant

physical properties of streams. By introducing three matching matrices, the general solution can be applied to various

types of one-dimensional multistream heat exchangers such as shell-and-tube heat exchangers, plate heat exchangers

and plate–fin heat exchangers as well as their networks. The general solution is applied to the calculation and design of

multistream heat exchangers. Examples are given to illustrate the procedures in detail. Based on this solution the su-

perstructure model is developed for synthesis of heat exchanger networks. � 2002 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Multistream heat exchangers are widely used in pro-

cess industries such as gas processing and petrochemical

industries to exchange heat energy among more than two

fluids with different supply temperatures because of their

higher efficiency, more compact structure and lower costs

than two-stream heat exchanger networks. A multi-

stream plate–fin heat exchanger can even handle up to 10

process streams in a single unit [1]. The use of multi-

stream heat exchangers is more cost-effective and can offer

significant advantages over conventional two-stream heat

exchangers in certain applications, especially in cryo-

genic plants [2–4]. However, the investigation on syn-

thesis of heat exchanger networks using multistream

heat exchangers is still limited because of lack of suit-

able calculation methods for the thermal performance

of general multistream heat exchangers.

The multistream heat exchangers can be classified

into two categories. One is multichannel heat exchanger

in which there is no thermal interconnection between the

walls separating the fluids, such as shell-and-tube heat

exchangers and plate heat exchangers. The other is

multistream plate–fin heat exchanger. The mathematical

model and its analytical solution for the thermal per-

formance of one-dimensional multistream plate–fin heat

exchangers was first proposed by Kao [5]. Haseler [6]

defined a bypass efficiency which describes heat transfer

between non-adjacent layers in a plate–fin heat ex-

changer to illustrate the bypass effect. For multichannel

heat exchangers a general solution of the temperature

distributions was proposed by Wolf [7]. Many signifi-

cant discussions on the general solution have been made

[8–12]. Based on the pioneering research work of Kao [5]

and Wolf [7], the thermal design problems of multi-

stream plate–fin heat exchangers were solved by Luo

et al. [13]. By introducing three matching matrices

Roetzel and Luo proposed a general form of the ana-

lytical solution for various types of one-dimensional

multistream heat exchangers and their networks [14]. In

the present paper, their method is further developed and

applied to the thermal calculation and design problems
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of multistream heat exchangers and their networks.

Examples are given to illustrate the procedures.

2. General mathematical model and its solution

Consider a generalized N-stream heat exchanger

which consists of a bundle of M parallel channels

(M PN ). The fluid flowing through a channel exchanges

heat with the fluids in all other channels. It is assumed:

(1) The longitudinal heat conduction in the solid wall

can be neglected. (2) There is no heat loss to the envi-

ronment. (3) The heat transfer coefficients and the

properties of the fluids and wall materials can be con-

sidered constant within each channel. The general

mathematical model can be written as

_WWi
dti
dx

¼
XM
j¼1

Uij tj
�

� ti
�

ði ¼ 1; . . . ;MÞ ð1Þ

with Uij ¼ Uji and Uii ¼ 0.

It is convenient to rewrite Eq. (1) into a matrix form

dT

dx
¼ AT; ð2Þ

where A is an M �M matrix

A ¼

� 1
_WW1

PM
l¼1

U1l
U12
_WW1

� � � U1M
_WW1

U21
_WW2

� 1
_WW2

PM
l¼1

U2l � � � U2M
_WW2

..

. . .
.

UM1
_WWM

UM2
_WWM

� � � � 1
_WWM

PM
l¼1

UMl

2
6666666664

3
7777777775
: ð3Þ

The positive value of _WWi indicates that the fluid flows in

the positive direction of the spatial coordinate and vice

versa. If _WWi and Uij are constant in each channel (they

may vary from channel to channel), the above ordinary

differential equation system is linear and can be solved

analytically. According to the theory of linear algebra

the general solution of Eq. (2) is obtained in the matrix

form as

T ¼ UeKxD ð4Þ

in which eKx ¼ diagfekixg is a diagonal matrix and

ki ði ¼ 1; . . . ;MÞ are the eigenvalues of matrix A. U is an

M �M square matrix whose columns are the eigenvec-

tors of the corresponding eigenvalues. Eq. (4) is valid

only if the eigenvalues differ from each other. It has been

proved that all eigenvalues of matrix A are real, how-

ever, Eq. (4) might have multiple eigenvalues [9–11].

Nomenclature

A coefficient matrix of the governing equation

system

Af total cross-sectional area of fins perpendic-

ular to the fin height coordinate, m2

Bi Biot number of fins, Bi ¼ ðh� dÞafFf=Afkf ,

dimensionless

F heat transfer area, m2

G interchannel matching matrix

G0 entrance matching matrix

G00 exit matching matrix

h fin height, m

k overall heat transfer coefficient, W/m2 K

L length of the heat exchanger, m

M number of channels

m number of sections in a plate–fin heat ex-

changer

N number of streams

n number of layers in a block of a plate–fin

heat exchanger

R number of heat exchangers in a network

s fin space, m

T fluid temperature vector, K

t fluid temperature, K

U heat transfer parameter, U ¼ kF =L, Uf;ij ¼
af ;ijFf ;ij=Lj, Up;ij ¼ ap;ijFp;ij=Lj, W/m K

U matrix of eigenvectors of the governing

equation system

W width of the heat exchanger, m
_WW thermal flow rate, W/K

x spatial coordinate along the length of the

heat exchanger, m

Greek symbols

a heat transfer coefficient, W/m2 K

d fin thickness, m

g fin efficiency

K vector of eigenvalues of the governing

equation system

k heat conductivity, W/m K; also eigenvalues

of the governing equation system

l fin bypass efficiency

Superscripts
0 entrance
00 exit

Subscripts

f fin

p plate

s supply

t target
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A practical method to avoid multiple eigenvalues is to

add very small random deviations to the input param-

eters such as _WWi or Uij. Such small deviations have al-

most no effect on the results.

The coefficient vector D in Eq. (4) is determined by

the boundary conditions. To get a general expression of

the boundary conditions, we introduce the following

three matching matrices:

Interchannel matching matrix G. It is an M �M
matrix whose elements gij are defined as the ratio of the

thermal flow rate flowing from channel j into channel i

to that flowing through channel i.

Entrance matching matrix G0. It is an M � N matrix

whose elements g0ik are defined as the ratio of the thermal

flow rate flowing from the entrance of stream k to

channel i to that flowing through channel i.

Exit matching matrix G00. It is an N �M matrix

whose elements g00ki are defined as the ratio of the thermal

flow rate flowing from channel i to the exit of stream k

to that flowing out of the exit of stream k.

From energy balance at the boundaries, i.e., the en-

trances of M channels, we have

T x0� �
¼ G0T0 þGT x00ð Þ ð5Þ

in which

T x0� �
¼ t1 x01

� �
; t2 x02

� �
; . . . ; tM x0M

� �� �T
; ð6Þ

T x00ð Þ ¼ t1 x001
� �

; t2 x002
� �

; . . . ; tM x00M
� �� �T

: ð7Þ

x0 and x00 are the coordinate vectors of the entrances and

exits of M channels, respectively.

Substitution of the boundary conditions, Eq. (5), into

Eq. (4) yields

T ¼ UeKx V0



�GV00
��1

G0T0; ð8Þ

where V0 and V00 are two M �M matrices, whose ele-

ments are given as

v0ij ¼ uijekjx0i ; ð9Þ

v00ij ¼ uijekjx00i ; ð10Þ

respectively. The outlet fluid temperatures of the ex-

changer can then be expressed explicitly as

T00 ¼ G00V 00 V0



�GV00
��1

G0T0: ð11Þ

Eq. (11) is general for one-dimensional heat exchangers.

The input data are the heat transfer parameters and

thermal flow rates given in A, the flow arrangement set

by G, G0 and G00 and the coordinates given in x0 and x00.

The coefficient matrix A also depends on the type of the

exchanger to be considered.

3. Applications of the general solution

To use the general solution one should at first divide

the exchanger into several sections according to the

construction of the exchanger. Each section contains

several channels. The fluids flow through the channels

and exchange heat with the fluids in other channels. The

sections should be divided such that there are no en-

trances or exits of streams inside the sections and the

fluid properties in each channel can be considered con-

stant. After the channel configuration has been made, it

is easy to get the matching matrices G, G0 and G00.

The major task to use the general solution is the

calculation of the coefficient matrix A. For multichannel

heat exchangers Eq. (3) can be used directly to calculate

the coefficient matrix A. A lot of elements of A become

zero because there is no heat exchange between corre-

sponding channels. However, the mathematical model

of temperature distribution in a multistream plate–fin

heat exchanger, which also contains energy equations of

separating plates and fins, differs from Eq. (1). By

eliminating the temperatures of separating plate and fins

in the energy equation of fluids, Luo et al. [13] trans-

formed the governing equation system into the form of

Eq. (2). The corresponding coefficient matrix A should

be specially calculated.

In the following examples it will be illustrated in detail

how to determine the matrices A, G, G0 and G00. The ex-

amples also show how to use the general solution to solve

the design problems of multistream heat exchangers.

3.1. Shell-and-tube heat exchangers

In a multistream shell-and-tube heat exchanger each

tube-side fluid exchanges heat only with the shell-side

fluid. There is no direct thermal contact between any

two tube-side fluids. The input matrices of an N-stream

E-type exchanger (one shell pass, arbitrary number of

tube passes, no split) have been given in [14]. Here a

more complicated example will be discussed.

3.1.1. Example 1

In this example, a three-stream E-type shell-and-

tube heat exchanger is used to heat two cold streams with

one hot stream. The data taken from [2] are presented in

Table 1. The exchanger is divided into three sections and

seven channels, as shown in Fig. 1, which yields

Table 1

Problem data for Example 1

Stream Ts (K) Tt (K) _WW (W/K)

1 H1 420 370 )8000
2 C1 300 350 4000

3 C2 280 320 5000

k ¼ 1:1 kW/m2 K for all matches
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A

¼

�UH1C2
_WWC2

0 0 0 UH1C2
_WWC2

0 0

0 �UH1C2
_WWC2

0 0 0 UH1C2
_WWC2

0

0 0 �UH1C1
_WWC1

0 0 UH1C1
_WWC1

0

0 0 0 �UH1C1
_WWC1

0 0 UH1C1
_WWC1

UH1C2
_WWH1

0 0 0 �UH1C2
_WWH1

0 0

0 UH1C2
_WWH1

UH1C1
_WWH1

0 0 �UH1C2þUH1C1
_WWH1

0

0 0 0 UH1C1
_WWH1

0 0 �UH1C1
_WWH1

2
66666666666666664

3
77777777777777775

;

ð12Þ

G ¼

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

2
66666666664

3
77777777775
;

G0 ¼

0 0 1

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

1 0 0

2
66666666664

3
77777777775
;

G00 ¼
0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 1 0 0 0 0 0

2
64

3
75;

ð13Þ

x0 ¼ 0; x1; x1; x2; x1; x2; L½ �T; x00 ¼ x1; x2; x2; L; 0; x1; x2½ �T:

By setting L ¼ 1, for given values of variables x1, x2,
UH1C1 and UH1C2, the outlet stream temperatures can be

calculated. The problem given in Table 1 for minimum

heat transfer area becomes

min Lð � x1ÞUH1C1=k þ x2UH1C2=k

s:t: tt;C1 � t002 ¼ 0; tt;C2 � t003 ¼ 0; x1 � x2 6 0;

06UH1C1; 06UH1C2; 06 x1 6 L; 06 x2 6 L:

ð14Þ

The results are x1 ¼ 0:2703, x2 ¼ 0:5483, UH1C1 ¼ 3:438
kW/m K and UH1C2 ¼ 4:294 kW/m K, which gives the

minimum heat transfer area of 4.42 m2. This exchanger

is equivalent to the two-stream heat exchanger network

shown in Fig. 2.

3.2. Plate heat exchangers

A plate heat exchanger consists of a number of par-

allel channels formed by a stack of heat transfer plates.

According to the combination of the plates with holes or

blanks located at the four corners of the plate and the

additional manifold axes if necessary, various flow pat-

terns may be created in a multistream plate heat ex-

changer, which can be classified into three categories:

series flow pattern, parallel flow pattern and complex

flow pattern. It is assumed that in the plate heat ex-

changer the fluid in each channel has thermal contact

only with the two adjacent channels. The corresponding

coefficient matrix of the governing equation system

reads

A

¼

�U12
_WW1

U12
_WW1

0 � � � 0

U21
_WW2

�U21þU23
_WW2

U23
_WW2

0 0

0 . .
. . .

. . .
.

0

0 0
UM�1;M�2

_WWM�1
�UM�1;M�2þUM�1;M

_WWM�1

UM�1;M
_WWM�1

0 � � � 0
UM ;M�1

_WWM
�UM ;M�1

_WWM

2
66666666664

3
77777777775
;

ð15Þ

where M is the number of channels.

3.2.1. Example 2

As an example, a three-stream plate heat exchanger

with countercurrent parallel arrangement shown in Fig.

3 is taken for the analysis. The data presented in Table 1

are used again. The numbers of channels for C1 and C2

are MC1 and MC2, respectively. Thus, MH1 ¼ MC1 þ
MC2 þ 1, M ¼ MH1 þMC1 þMC2. Since the values of

kH1C1 and kH1C2 given in Table 1 are constant, kH1C1 ¼
kH1C2 ¼ k, we have U ¼ kFp=L for all plates in which Fp
is the effective heat transfer area of one plate.

Fig. 2. Equivalent two-stream heat exchanger network.

Fig. 1. Construction of the three-stream shell-and-tube heat

exchanger.
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From Fig. 3 we have,

x0i ¼
L; i is odd;
0; i is even;

�
x00i ¼

0; i is odd;
L; i is even:

�
ð16Þ

It is further assumed that the thermal flow rates are

uniformly distributed in their channels. Thus, the ther-

mal flow rates in each channel are given as

_WWi ¼
_WWH1=MH1; i is odd;
_WWC1=MC1; i is even and i6 2MC1;
_WWC2=MC2; i is even and i > 2MC1:

8<
: ð17Þ

According to the channel connection shown in Fig. 3, we

also have G ¼ 0. The non-zero elements of G0 and G00

are given by

g0ik ¼ 1 if
k ¼ 1; i is odd;

or k ¼ 2; i is even and i6 2MC1;
or k ¼ 3; i is even and i > 2MC1;

8<
:

g00ki ¼
1=mH1; k ¼ 1 and i is odd;
1=mC1; k ¼ 2; i is even and i6 2MC1;
1=mC2; k ¼ 3; i is even and i > 2MC1:

8<
: ð18Þ

By setting L ¼ 1, for given values of integer variables

MC1 and MC2, the outlet stream temperatures can be

calculated. The design problem given in Table 1 becomes

min MC1 þMC2

s:t: tt;C1 � t002 6 0; tt;C1 � t003 6 0;

0 < MC1; 0 < MC2:

ð19Þ

The results are show in Table 2 for Fp ¼ 0:2 and 0:1 m2,

respectively.

3.3. Plate–fin heat exchangers

A plate–fin heat exchanger consists of fins separated

by flat plates, clamped and brazed together, as shown in

Fig. 4. The plates separating two fluids function as the

primary heat transfer surface. The fin sheets between the

adjacent plates hold the plates together and form a

secondary surface for heat transfer. The space of fin

sheets between two plates forms a flow channel and

is known as a layer. A multistream plate–fin heat

exchanger contains more than two streams flowing

through different layers and sections of the exchanger.

The exchanger usually consists of many passage blocks

which are repetitively arranged. Each block consists of n

layers. Since there is a very large number of layers in an

exchanger, we usually assume that the behaviour of a

block can adequately describe that of the entire ex-

changer, therefore only n layers need to be analysed.

There are two kinds of block arrangements. One is se-

quential arrangement and the other is symmetrical ar-

rangement. For the sequential arrangement of the

blocks, e.g.,

� � �A B C D|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Block j�1

A B C D|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Block j

A B C D|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Block jþ1

� � � ;

the layer number i ¼ nþ 1 points to the first layer in the

upper block (i ¼ 1); the layer number i ¼ 0 points to the

nth layer in the lower block (i ¼ n). For the symmetrical

arrangement, e.g.,

� � �D C B A|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Block j�1

A B C D|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Block j

D C B A|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Block jþ1

� � � ;

the layer number i ¼ nþ 1 points to the same layer in

the upper block (i ¼ n); the layer number i ¼ 0 points

to the same layer in the lower block (i ¼ 1). The sym-

metrical arrangement also means that the block is

thermally insulated at the upper and lower surfaces. If

the whole exchanger is analysed, the symmetrical ar-

rangement should be adopted.

Table 2

Results of Example 2

Stream Fp ¼ 0:2 m2 Fp ¼ 0:1 m2

T 00 (K) M T 00 (K) M

1 H1 365.4 14 367.9 25

2 C1 352.5 7 350.6 13

3 C2 325.3 6 322.9 11

F (m2) 5.2 m2 4.8 m2

Fig. 4. Configuration of the plate–fin heat exchanger surface.

Fig. 3. Three-stream plate heat exchanger with countercurrent

parallel arrangement.
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Consider a block in a multistream plate–fin heat ex-

changer, which has n layers and is divided along the

exchanger length into m sections according to the inlet

and outlet positions of the streams as shown in Fig. 5.

Therefore the whole exchanger consists of mn channels.

The elements of the mn� mn coefficient matrix A are

given by Luo et al. [13] for both sequential and sym-

metrical block arrangements as

a i�1ð Þmþj; i�1ð Þmþj

¼�
Up;ijþgijUf ;ij

_WWij
� 1

�
�1

2
p i�1ð Þmþj; i�1ð Þmþj

�
þp I iþ1ð Þ�1½ �mþj; i�1ð Þmþj

��
; ð20aÞ

a i�1ð Þmþj;l ¼
Up;ij þ gijUf ;ij

2 _WWij
p i�1ð Þmþj;l

�
þ p I iþ1ð Þ�1½ �mþj;l

�
lð ¼ 1; . . . ;mn; l 6¼ ið � 1Þmþ jÞ ð20bÞ

for i ¼ 1; . . . ; n and j ¼ 1; . . . ;m, in which

IðiÞ ¼ 1; i ¼ nþ 1 and sequential arrangement;
i; others

�
ð21Þ

and the fin efficiency gij is defined as

gij ¼ tanh
ffiffiffiffiffiffiffi
Biij

p
=2

� �
=

ffiffiffiffiffiffiffi
Biij

p
=2

� �
ð22Þ

with

Biij ¼ hij
�

� dij

�
af;ijFf ;ij=Af ;ijkf ;ij: ð23Þ

To calculate the plate temperatures the fin bypass effi-

ciency introduced by Haseler [6] is used which is defined

as

lij ¼
2ffiffiffiffiffiffiffi

Biij
p

sin h
ffiffiffiffiffiffiffi
Biij

p : ð24Þ

P is the coefficient matrix of plate temperatures,

Tp ¼ PT: ð25Þ

For sequential block arrangement

P ¼ Q�1C; ð26Þ

where P, Q and C are mn� mn matrices. The non-zero

elements of Q and C are given as follows:

i ¼ 1; j ¼ 1; . . . ;m:

qj; n�1ð Þmþj ¼ �lnjUf ;nj; ð27aÞ

qjj ¼ Up;1;j þ g1;j

�
þ l1;j

�
Uf;1;j þ Up;nj þ gnj

�
þ lnj

�
Uf ;nj;

ð27bÞ

qj;mþj ¼ �l1;jUf ;1;j; ð27cÞ

cj; n�1ð Þmþj ¼ Up;nj þ gnjUf ;nj; ð27dÞ

cjj ¼ Up;1;j þ g1;jUf;1;j: ð27eÞ

i ¼ n; j ¼ 1; . . . ;m:

q n�1ð Þmþj; n�2ð Þmþj ¼ �ln�1;jUf ;n�1;j; ð28aÞ

q n�1ð Þmþj; n�1ð Þmþj ¼ Up;nj þ gnj

�
þ lnj

�
Uf;nj þ Up;n�1;j

þ gn�1;j

�
þ ln�1;j

�
Uf ;n�1;j; ð28bÞ

q n�1ð Þmþj;j ¼ �lnjUf ;nj; ð28cÞ

c n�1ð Þmþj; n�2ð Þmþj ¼ Up;n�1;j þ gn�1;jUf ;n�1;j; ð28dÞ

c n�1ð Þmþj; n�1ð Þmþj ¼ Up;nj þ gnjUf ;nj: ð28eÞ

i ¼ 2; . . . ; n� 1; j ¼ 1; . . . ;m:

q i�1ð Þmþj; i�2ð Þmþj ¼ �li�1;jUf;i�1;j; ð29aÞ

q i�1ð Þmþj; i�1ð Þmþj ¼ Up;ij þ gij

�
þ lij

�
Uf ;ij þ Up;i�1;j

þ gi�1;j

�
þ li�1;j

�
Uf ;i�1;j; ð29bÞ

q i�1ð Þmþj;imþj ¼ �lijUf ;ij; ð29cÞ

c i�1ð Þmþj; i�2ð Þmþj ¼ Up;i�1;j þ gi�1;jUf ;i�1;j; ð29dÞ

c i�1ð Þmþj; i�1ð Þmþj ¼ Up;ij þ gijUf;ij: ð29eÞ

For symmetrical block arrangement P is an mðnþ 1Þ�
mn matrix

pl; i�1ð Þmþj ¼
p�l; i�1ð Þmþj; i ¼ 1; . . . ; n� 1

p�l; n�1ð Þmþj þ p�l;nmþj; i ¼ n

(

lð ¼ 1; . . . ;m nð þ 1Þ; j ¼ 1; . . . ;mÞ; ð30Þ

where

P� ¼ Q�1C ð31Þ

and Q and C are mðnþ 1Þ � mðnþ 1Þ matrices whose

non-zero elements for 1 < i6 n are the same as Eqs.

(29a)–(29e). For the first and last plates we have,

i ¼ 1; j ¼ 1; . . . ;m:

qjj ¼ Up;1;j þ g1;j

�
þ l1;j

�
Uf;1;j; ð32aÞ

qj;mþj ¼ �l1;jUf ;1;j; ð32bÞ

Fig. 5. Arrangement of the streams, layers and sections in a

plate–fin heat exchanger.
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cjj ¼ Up;1;j þ g1;jUf;1;j: ð32cÞ

i ¼ nþ 1; j ¼ 1; . . . ;m:

qnmþj; n�1ð Þmþj ¼ �lnjUf ;nj; ð33aÞ

qnmþj;nmþj ¼ Up;nj þ gnj

�
þ lnj

�
Uf ;nj; ð33bÞ

cnmþj; n�1ð Þmþj ¼ Up;nj þ gnjUf;nj: ð33cÞ

The matrices G, G0 and G00 and the vectors x0 and x00

should be set according to the particular configuration

of the exchanger.

3.3.1. Example 3

Take a four-stream aluminium plate–fin heat ex-

changer as an example, of which the experimental data

were given by Li et al. [15]. The exchanger is used to cool

the product stream A and heat the product stream D to

given temperatures. The arrangement of the exchanger is

B A C/D A B A C/D A B A C/D A B A C/D A B.

However, only one block B A C/D A in sequential ar-

rangement is taken for the calculation. The channel ar-

rangement is shown in Fig. 6. In the exchanger the hot

water stream A is cooled by the cold water streams B, C

and D. Offset strip fins (h ¼ 4:7 mm, s ¼ 2:0 mm,

d ¼ 0:3 mm) are used for channels A, B and C, and

perforated rectangular fins (h ¼ 4:7 mm, s ¼ 4:2 mm,

d ¼ 0:6 mm) for channel D. The parameters for the ith

layer and jth section can be calculated by

Uf;ij ¼ 2aijðhij � dijÞW =sij; Up;ij ¼ 2aijðsij � dijÞW =sij;

Biij ¼ 2aijðhij � dijÞ2=ðkfdijÞ;

where W is the width of the exchanger, W ¼ 130 mm.

The heat conductivity of fins kf ¼ 191:58 W/m K. The

heat transfer coefficients and thermal flow rates are

given in Table 3. Thus, the coefficient matrix A can be

obtained. According to Fig. 6, the coordinate vectors

and matching matrices are given as follows:

x0 ¼ 0:925; 1:24; 0; 0:925; 0:925; 1:24; 0; 0:925½ �T ðmÞ;

x00 ¼ 0; 0:925; 0:925; 1:24; 0; 0:925; 0:925; 1:24½ �T ðmÞ:

The non-zero elements of G, G0 and G00 are

g12 ¼ g43 ¼ g87 ¼ 1; g022 ¼ g031 ¼ g053 ¼ g064 ¼ g071 ¼ 1;

g0014 ¼ g0018 ¼ 0:5; g0021 ¼ g0035 ¼ g0046 ¼ 1:

Table 3 also gives the comparison between the measured

outlet fluid temperatures and the calculated ones. A

good agreement is achieved between them.

3.4. Heat exchanger networks

The general solution can also be applied to the net-

works of two-stream heat exchangers and one-dimen-

sional multistream heat exchangers by considering the

network as a general multistream heat exchanger.

However, if the network contains a large number of

exchangers, the coefficient matrix of the governing

equation system would be enlarged, which might cause

difficulties in calculating its eigenvalues and eigenvec-

tors.

Let us consider a network with N streams and R heat

exchangers. From Eq. (11) we have already obtained the

temperature coefficient matrices of R individual ex-

changers

Vr ¼ G00
rV

0
r V0

r



�GrV

00
r

��1

G0
r ðr ¼ 1; 2; . . . ;RÞ: ð34Þ

We assume that each stream in an exchanger occupies

one channel. Therefore, the network consists of M

channels (M ¼
PR

l¼1 Nl) and the channel number of the

nth stream in the rth exchanger can be set as

m ¼ nþ
Pr�1

l¼1 Nl where Nl is the number of streams in

the lth exchanger. Thus, according to the energy balance

at the entrance of each channel, the outlet stream tem-

perature of the network can be expressed as

T00 ¼ G00V Ið �GVÞ�1
G0T0 ð35Þ

in which
Fig. 6. Construction of the four-stream plate–fin heat ex-

changer.

Table 3

Comparison of predicted outlet fluid temperatures with the experimental data of a four-stream plate–fin heat exchanger

Stream _WW (kW/K) a ðkW=m2 KÞ Tin (�C) Tout;exp : (�C) Tout;cal: (�C)

A 1.354 1.644 41.93 32.43 32.53

B )0.9604 1.791 34.93 39.40 39.03

C )0.5902 1.465 31.06 39.62 39.39

D )0.8015 0.8189 21.98 27.23 26.82
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V ¼

V1 0

V2

. .
.

0 VR

2
6664

3
7775: ð36Þ

3.4.1. Example 4

The example given in Table 4 is taken from [16]. Its

temperature–enthalpy diagram is shown in Fig. 7. Ac-

cording to Fig. 7, we first consider a network consisting

of five multichannel heat exchangers and one two-

stream heat exchanger, as shown in Fig. 8. The streams

in each exchanger are arranged as follows:

EX1: H1 C3 H2, symmetric,

EX2: H1 C1 H2, symmetric,

EX3: H1 C1 H2 C2, sequential,

EX4: C1 H1 C2, symmetric,

EX5: C1 H3 C2, symmetric,

EX6: H1 C1, sequential.

The heat transfer parameters are calculated by

Ui�j ¼
Fi�j

L 1=ai þ 1=aj

� � ; ð37Þ

where Fi�j is the heat transfer area between streams i and

j. The design problem is to find Fi�j for all matches so

that the sum of them reaches minimum

min
X

Fi�j

s:t: t00Hk � tt;Hk ¼ 0 ðk ¼ 1; 2; 3Þ;
tt;Ck � t00Ck P 0 ðk ¼ 1; 2Þ; 06 Fi�j:

ð38Þ

To calculate the outlet stream temperatures, the neces-

sary matrices of each exchanger are given as follows,

respectively, in which the length of exchangers is set to

be L ¼ 1.

A1 ¼

� U1–3
_WWH1

0 U1–3
_WWH1

0 � U2–3
_WWH2

U2–3
_WWH2

U1–3
_WWCU

U2–3
_WWCU

� U1–3þU2–3
_WWCU

2
6664

3
7775;

A2 ¼

� U4–6
_WWH1

0 U4–6
_WWH1

0 � U5–6
_WWH2

U5–6
_WWH2

U4–6
_WWC1

U5–6
_WWC1

� U4–6þU5–6
_WWC1

2
6664

3
7775;

A3 ¼

� U7–9þU7–10
_WWH1

0 U7–9
_WWH1

U7–10
_WWH1

0 � U8–9þU8–10
_WWH2

U8–9
_WWH2

U8–10
_WWH2

U7–9
_WWC1

U8–9
_WWC1

� U7–9þU8–9
_WWC1

0

U7–10
_WWC2

U8–10
_WWC2

0 � U7–10þU8–10
_WWC2

2
6666664

3
7777775;

A4 ¼

� U11–12þU11–13
_WWH1

U11–12
_WWH1

U11–13
_WWH1

U11–12
_WWC1

� U11–12
_WWC1

0

U11–13
_WWC2

0 � U11–13
_WWC2

2
6664

3
7775;

A5 ¼

� U14–15þU14–16
_WWHU

U14–15
_WWHU

U14–16
_WWHU

U14–15
_WWC1

� U14–15
_WWC1

0

U14–16
_WWC2

0 � U14–16
_WWC2

2
6664

3
7775;

Table 4

Problem data for Example 4

Stream Ts (�C) Tt (�C) _WW (kW/K) a (kW=m2 K)

1 H1 150 60 )20 0.05

2 H2 90 60 )80 0.4

3 HU 181 180 1075 1

4 C1 20 125 25 0.1

5 C2 25 100 30 0.6

6 CU 10 15 80 0.6

Fig. 7. Temperature–enthalpy diagram of Example 3. Fig. 8. Heat exchanger network of Example 4.
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A6 ¼
� U17–18

_WWHU

U17–18
_WWHU

U17–18
_WWC1

� U17–18
_WWC1

2
4

3
5;

x0
1 ¼ x0

2 ¼ 1; 1; 0½ �T; x0
3 ¼ 1; 1; 0; 0½ �T;

x0
4 ¼ x0

5 ¼ 1; 0; 0½ �T; x0
6 ¼ 1; 0½ �T;

x00
1 ¼ x00

2 ¼ 0; 0; 1½ �T; x00
3 ¼ 0; 0; 1; 1½ �T;

x00
4 ¼ x00

5 ¼ 0; 1; 1½ �T; x00
6 ¼ 0; 1½ �T;

Gi ¼ 0; G0
i ¼ G00

i ¼ I ði ¼ 1; 2; . . . ; 6Þ:
The non-zero elements of the matching matrices of the

whole network are given as,

g1;4 ¼ g2;5 ¼ g4;7 ¼ g5;8 ¼ g7;11 ¼ g9;6 ¼ g12;9 ¼ g13;10

¼ g14;17 ¼ g15;12 ¼ g16;13 ¼ g18;15 ¼ 1;

g03;6 ¼ g06;4 ¼ g08;2 ¼ g010;5 ¼ g011;1 ¼ g017;3 ¼ 1;

g001;1 ¼ g002;2 ¼ g003;14 ¼ g004;18 ¼ g005;16 ¼ g006;3 ¼ 1:

Solving Eq. (38) we obtain,

EX1: FH1–C3 ¼ 128:96 m2; FH2–C3 ¼ 6:02 m2,

EX2: FH1–C1 ¼ 45:58 m2; FH2–C1 ¼ 0 m2,

EX3: FH1–C1 ¼ 346:53 m2; FH1–C2 ¼ 0 m2;
FH2–C1 ¼ 269:27 m2; FH2–C2 ¼ 384:10 m2,

EX4: FH1–C1 ¼ 282:48 m2; FH1–C2 ¼ 218:01 m2,

EX5: FH3–C1 ¼ 37:81 m2; FH3–C2 ¼ 5:08 m2,

EX6: FH3–C1 ¼ 101:48 m2.

The total heat transfer area is 1825:32 m2. Since FH2–C1

in EX2 and FH1–C2 in EX3 are zero, EX2 reduces to a

two-stream heat exchanger and EX3 should be sym-

metrically arranged.

This network is equivalent to the network consisting

of 11 two-stream heat exchangers. According to the cost

equation [16]:

cost ¼ 8:6þ 0:67 Area0:83 ðarea in m2; cost in k$Þ
ð39Þ

the cost of exchangers is 578.76 k$. This value is much

smaller than that given by Briones and Kokossis [16].

For the same problem, the application of their model

yielded a network consisting of five exchangers. They

did not give the structure of the network. In their ex-

ample, the matches of design A are given as: H1–C1,

H1–C3, H2–C1, H2–C2, H3–C2. The total heat transfer

area is 3314.1 m2 and the cost of the exchangers is 699.2

k$. It should be pointed out that in this problem there

are five outlet stream temperatures to be targeted (the

sixth one is determined by the energy balance of the

whole network). Therefore the degree of freedom is

equal to the number of variable parameters minus five.

If only five exchangers are used, the heat transfer area of

each exchanger is fixed for given structure of the net-

work. The possible structure of their design A is shown

in Fig. 9. The heat transfer area of each exchange can

be obtained as: FH1–C3 ¼ 151:59 m2, FH2–C1 ¼ 162:19 m2,

FH2–C2 ¼ 519:30 m2, FH1–C1 ¼ 2462:94 m2, FH3–C2 ¼ 29:44
m2. The total area and total cost of exchangers are

3325.46 m2 and 700.80 k$, respectively, which are close

to the results given in [16].

Now we consider the minimum total cost of heat ex-

changers as the object function. Starting from a general

multichannel heat exchanger network illustrated in Fig.

10, synthesis of the two-stream heat exchanger network

by using the present general solution for Example 4 with

minimum total cost of heat exchangers yields a net-

work with six exchangers shown in Fig. 11, whose areas

are FH1–C3 ¼ 151:59 m2, FH1–C1 ¼ 552:34 m2, FH2–C1 ¼
344:11 m2, FH2–C2 ¼ 425:87 m2, FH1–C2 ¼ 238:80 m2 and

FH3–C1 ¼ 157:56 m2, respectively. The total heat trans-

fer area is 1870.27 m2 and total cost of exchangers is

516.46 k$.

The synthesis method used here is based on a stage-

wise superstructure [2] and the whole temperature field

Fig. 9. Heat exchanger network of Example 4 according to [16].

Fig. 10. Start structure of the multichannel heat exchanger

network of Example 4 with minimum cost of heat exchangers.

Fig. 11. Two-stream heat exchanger network of Example 4

with minimum cost of heat exchangers.
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of the network calculated with the general solution. The

advantage using this method is obvious because the

synthesis problem reduces into a general non-linear

optimization task with outlet temperature constraints

and other additional constraints if needed. The binary

variables determining whether the corresponding ex-

changer exists are not necessary because usually the

value of n in the cost equation

cost ¼ aþ bF n ð40Þ

is less than one. It is convenient to use

cost ¼ aþ bF n; F P Fmin;
aþ bF n

min

� �
F =Fmin; F < Fmin:

�
ð41Þ

In this case the optimization will automatically yield

both the area and cost of an unnecessary exchanger to

zero.

4. Conclusions

A general form of the analytical solution for various

types of one-dimensional multistream heat exchangers

and their networks is proposed. The methods for the use

of the general solution are illustrated in detail for one-

dimensional flow shell-and-tube heat exchangers, plate

heat exchangers, plate–fin heat exchangers and heat

exchanger networks. The solution is valid for any types

of two-stream heat exchangers by introducing the cor-

rection factor of logarithmic mean temperature differ-

ence.

The outlet temperatures of the streams in a multi-

stream heat exchanger or heat exchanger network are

explicitly given by Eq. (11) or Eq. (35). Therefore it is

easy to obtain the outlet stream temperatures for an

existing heat exchanger or heat exchanger network.

However, for design problems of multistream heat ex-

changer and their networks no simple relationship

for the calculation of heat transfer area is avail-

able. Therefore a constrained optimization algorithm is

needed to determine unknown heat transfer areas and

other parameters under a set of constraints, as shown

in Examples 1, 2 and 4.

The general solution is also applied to the synthesis

of heat exchanger networks. Based on this solution the

stage-wise superstructure method is developed to solve

the synthesis problem of two-stream as well as multi-

stream heat exchanger networks. For Example 4 a better

network than that of [16] is obtained.

The present solution can be applied to the case of

variable physical properties by dividing the flow pas-

sages into several channels and assuming that in each

channel the fluid properties are constant. Iterations are

needed because the fluid properties should be calculated

according to the mean temperatures of the fluids in the

corresponding channels.
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